

Joint Activity Scenarios & Modelling

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Innosuisse – Swiss Innovation Agency

Agenda

10:00	Registration and coffee	
10:15	Welcome	Domenico Giardini (ETHZ)
10:20	Energy Strategy 2050: Perspectives and Policies	Anne-Kathrin Faust (SFOE)
10:40	Joint Activity Scenarios & Modelling: Approach and first	The JASM team
12:00	Lunch	
13:30	Seasonal Heat Storage: the Underestimated Pillar of our Future Energy System	Stefan Brändle (Amstein + Walthert AG)
13:50	Alpiq - Energy with a future	Olivier Chène (Alpiq)
14:10	Integrated Energy System Modelling (Nexus) - Need for scenario inputs and data	Christian Schaffner (ESC)
14:30	National and Local Pathways of the Energy Transition	Ndaona Chokani (ETHZ)
14:50	Heat scenarios in Geneva by 2035: which role can geothermal energy play?	Loic Quiquerez (SIG)
15:10	Seeing beyond total system cost: Welfare effects of technology-based climate policies in liberalized electricity	Frank Vöhringer (econability)
15:30	Panel discussion: How can scenario modelling support the energy transition?	T. Kober, AK. Faust, O. Chène, Ch. Schaffner, N. Chokani, F. Vöhringer, D. Giardini, L. Quiquerez
4		

Global climate change

Source: IPCC 3

Swiss climate change

© Klimaszenarien CH2018

Scope and mission of JASM

Deliver scenarios how Switzerland can reach near zero CO₂ emissions in 2050

Technology

New renewables, storage, efficiency, sector coupling, e-mobility, grids, etc

Measures

Efficiency targets, CO₂ price, feed-in tariffs, ban of technologies, etc

Impact

Micro- and macroeconomy, society, landscape, industry

How will energy demand develop?

Space heat

Growth of energy reference area, building standards & renovations, change of HDD & CDD with climate

Process heat

Efficiency of industrial processes

Electricity

Development of appliance efficiency standards Mobility

Following ARE scenarios

Growth of energy reference area

Floor area for space heating (Million sq. meters)

How will building heating demand develop? Current breakdown of building surfaces

24%

15%

20%

17%

23%

Window

MFH Building Element Surfaces (45%)

25%

11%

15% 16%

33%

29%

11%

16%

17%

27%

Typical Thermal Performance Class (TTPC) by Period:

18%

10%

12%

13%

47%

Roof

Wall

Ground

SFH

U-values of building surfaces (W/m²K)

Specific space heating demand (kWh/m²a)

	Average Space Heating Demand per ERA and year [kWh/m²a]								
FINAL ENERGY		AGE	URBAN	SUBURBAN	RURAL AVE		RAGE		
	MFH	≤ 1920	112	121	145	124			
		1921-'45	125	144	169	136			
		1946-'60	124	134	151	130			
		1961-'70	104	120	130	115			
		1971-'80	100	111	119	108	94		
		1981-'90	83	89	92	88			
		1991-'00	72	76	76	75			
		2001-'10	47	48	46	48			
		2011-'18	25	23	22	24			
	SFH	≤ 1920	163	180	199	189			
		1921-'45	174	182	189	182			
		1946-'60	171	187	197	187			
		1961-'70	178	188	194	189	4		
		1971-'80	147	150	164	155	13/		
		1981-'90	104	104	112	107			
		1991-'00	79	82	86	83			
		2001-'10	56	50	50	51			
		2011-'18	26	25	25	25			
	AVERAGE		103	108	126	112			

	Share of	Total Swiss S	pace Heating D	emand per	year [%]		
	AGE	URBAN	SUBURBAN	RURAL	TOTAL		
_	≤1920	2.5%	2.5%	2.2%	7.3%		
	1921-'45	2.6%	1.5%	0.8%	4.8%		
	1946-'60	3.4%	2.6%	0.7%	6.6%		
	1961-'70	2.8%	4.1%	1.1%	8.1%		
ИF	19 7 1-'80	2.1%	3.6%	1.1%	6.8%	46%	
	1981-'90	1.1%	2.5%	0.9%	4.6%		
	1991-'00	0.8%	2.1%	0.9%	3.8%		20
	2001-'05	0.8%	1.7%	0.5%	3.0%		2
	2006-'15	0.3%	0.6%	0.2%	1.1%		2
	≤1920	1.0%	4.4%	7.6%	13.0%		
	1921-'45	1.5%	3.3%	2.4%	7.2%		N N
	1946-'60	1.0%	3.6%	2.3%	6.9%		Ē
_	1961-'70	0.5%	3.5%	2.4%	6.4%	。	
SFH	1971-'80	0.6%	4.0%	2.7%	7.4%	5	
	1981-'90	0.5%	3.0%	2.3%	5.8%		
	1991-'00	0.3%	2.1%	1.7%	4.1%		
	2001-'05	0.2%	1.3%	1.0%	2.5%		
	2006-'15	0.0%	0.2%	0.3%	0.5%		
TOTAL		22.2%	46.7%	31.1%	47 TWh/	a	

The HDD & CDD method How will space heating and cooling demand change?

Trends in heating and cooling demand

M. Berger, J. Worlitschek, "The influence of climate trends on heating and cooling demand", Weather and Climate Extremes, [in review].

Space heating demand will go down...

... while cooling demand will grow

Trends in heating and cooling demand

There will be longer and hotter summers – but still cold winter days

How will electricity consumption evolve? White goods, lighting, ICT

Energy consumption (PJ/a)

Electrical load profiles Residential, service, industrial sectors

Switzerland load curves without heating / only applainces

Typical weekday/weekend for 12 months and 13 end-use types Will be available on <u>www.electrowhat.ch</u> in 2019

0.2

Industrial sector How will process heat & electricity demand develop?

- Processes in the main industrial sectors were modeled covering >80% of the total energy consumption
 - Steel (1)
 - Pulp & Paper (5)
 - Refinery (1)
 - Food & beverage (6)
 - Cement (1)

Ohu = 9.17 MJ/adt Cold streams

Q^{cu} = 839.97 MJ/adt

Heat Load [MJ/adt of pulp]

 $O^{cu} = 1.00 \text{ GJ/adt}$

15

20

Heat Load [GJ/adt of pulp]

Composite curves for pulp and paper thermo-mechanical plant

25

30

35

0.3

0.25

Cold streams Hot streams

200

140

120

[°C]

Hot streams

emperature [°C]

Heat Load [GJ/adt of pulp]

 $O^{cu} = 1.00 \text{ GJ/ad}$

Ohu = 9.17 MJ/adt

JASM

Process heat & electricity demand Approach

- Comparison with multiple sources: different SFOE reports, PROGNOS, BREF, etc.
- Minute documentation of data sources
- Extrapolation allows integration in energy system models (STEM, SES)

Process heat & electricity demand Example for the food & beverages sector

Expert opinion → extrapolation to process/system level

How will energy supply develop?

Hydro power

Assess the impact of climate change on runoff and on hydro power production

Photovoltaics

Where to place large amounts of generation – in urban and/or mountain areas?

Climate & hydropower

How will climate change impact Swiss hydropower?

Data and methods

- Data for three climate periods
 - Historic (1980-2009)
 - 2021-2050
 - 2070-2099
- Runoff data with high geographical and temporal resolution (by WSL)
- Swissmod electricity market model

Hydropower in Swissmod

Climate data: Runoff (historic)

Climate data: Runoff (2021-2050)

Climate data: Runoff (2070-2099)

Inflow change by climate

Results: Overall impact

Absolute difference in Total System Cost relative to historic base year

Historic, 2021 – 2050, 2070 – 2099

Results: Revenues in average years

• RoR benefits significantly more from better seasonality than dam

2021 – 2050, 2070 – 2099

Changes in revenues in average year

- For other weather conditions:
 - Dry years get worse
 - Wet years get better

Where to place renewables?

Cost-optimal

Regionally equitable (Proportional to population or el. demand)

Goal:

Assess electricity generation cost and regional equity tradeoffs between various spatial allocation strategies

EXPANSE Spatially-explicit bottom-up power system model

The Gini index A measure for regional equity

Cumulative share of renewable electricity generation

$Gini = \frac{A}{A+B}$ Equity = 100 - Gini [%]

100%

Optimization results Trade-off between costs and regional equity

Key findings

- A regionally equitable distribution of renewable generation capacity in proportion to population or electricity demand can lead to significant increases in electricity generation costs
- Focus on cost-optimality leads to spatial concentration of investments to a few locations (such as canton Vaud)
- Spatial allocation strategies have to be well planned and discussed at federal level – in order to avoid intracantonal conflicts

PV production in snow-covered mountains

Scenario definition

Core scenarios

Mix of explorative and normative scenarios

Variants

Skepticism, market integration, increasing acceptance of new technologies

Strategy needs policy, policy needs markets and users

Main strategic objectives

Per capita energy consumption: -16% in 2020 from 2000 -43% in 2035 from 2000

Per capita electricity consumption: -3% in 2020 from 2000 -13% in 2035 from 2000

Domestic electricity production from RES: In 2020: 4.4 TWh (RES other than hydro) In 2035: 11.4 TWh (RES other than hydro) Hydropower: 37.4 TWh in 2035

GHG emissions:

-20% in 2020 from 1990 -50% in 2030 from 1990 -70-85% in 2050 from 1990 Carbon neutrality after 2050

JASM scenario structure

Overview of the core scenarios

	E-POL	CLI	BAU
	Towards well-below 2000 W/capita	Towards carbon neutrality	
Objective	Efficiency, renewables, grid & storage	Strategic objective to reduce emissions	Benchmark scenario, current policies
Main feature	New energy act implemented & extrapolated	Proposed CO2 act implemented & extrapolated	Current energy and CO2 law implemented & extrapolated
Nuclear power	No new nuclear power, 60yrs lifetime	No new nuclear power, 60yrs lifetime	No new nuclear power, 60yrs lifetime
Renewables	Targets for electricity supply & final energy	Targets for electricity supply & final energy	No specific targets
Efficiency	Per capita consumption targets and buildings standards	No specific targets	No specific targets
GHG emissions	No specific targets, but vehicle standards included	GHG emissions targets, incl. taxes & standards	Current policies and practices

瞴

ASM

Main inputs to E-POL scenario

Renewables

Source: SES 2050

Energy prices

Source: IEA, 2018 NPS scenario

Efficiency

Source: SES 2050

Electricity grids

Source: ENTSO-E, TYNDP 2018

Potentials

Source: Bauer et al, 2017

Other

Swiss ETS linear factor 2.2% p.a.

Support for renewables phase out by 2030

Efficiency standards in buildings

CO2 emissions standards for vehicles inline with the EU

Climate change impacts on demand and hydro

Main inputs to CLI scenario

Renewables

Source: SES 2050

GHG emission targets

Source: CO2 Act & own calculations

Electricity grids

Source: ENTSO-E, TYNDP 2018

Potentials

Source: Bauer et al, 2017

Other

Swiss ETS linear factor 2.6% p.a.

Support for renewables phase out by 2030

Emission standards in buildings

CO2 emissions standards for vehicles inline with the EU

Climate change impacts on demand and hydro

Energy prices

Population and GDP

GDP (Index 2010=100)

Population (Millions)

Ranges reflect variability of site conditions, feedstock costs & future technology cost development

Source: Bauer, C. et al. 2017. Potentials, costs and environmental assessment of electricity generation technologies. (PSI, WSL, ETHZ, EPFL, 2017).⁴⁷

GWh/a (additional generation comp. to 2015)

Source: Bauer, C. et al. 2017. Potentials, costs and environmental assessment of electricity generation technologies. (PSI, WSL, ETHZ, EPFL, 2017).⁴⁸

Private cars costs

Car ownership cost in CHF/km (best estimate, medium size car, 12000 km/yr.)

Source: Cox, B. et al, 2019. Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios (under review)

Definition of the variants

- Increased technology deployment by consumers & access to domestic renewable resources
- Increased R&D worldwide to Power-to-Gas, H2 supply & consumption technologies

Better market integration of distributed generation, increased digitalization and smart grids

- Community-level trading markets, smart prosumers, increased demand flexibility (e.g. DSM, V2G)
- Higher integration with the European energy and electricity markets

Skepticism stemming from fragmented international energy & climate policies

- Reduced learning rates of renewable technologies, NIMBY consumers
- Integration with the European energy and electricity markets partly achieved (or failed)

Preliminary results at national scale

STEM

Swiss Times Energy System Model; detailed representation of all relevant sectors

SES-TD

Swiss EnergScope-Typical days; simple but complete model of the energy sector

Swissmod

Transmission grid model including connections to neighboring countries

The Swiss TIMES Energy Systems Model

- Representation of the whole Swiss energy system
- Long term horizon with high intra-annual resolution

JASM

Energy related CO2 emissions (excluding international aviation)

Energy related CO2 emissions (Mt/yr.) CO_2 emissions reductions by area in 2050 relative to BAU (Mt/yr.) Energy conservation 2015, 36.8 BAU, 34.0 Replacement in electricity Fuel switching in stationary EPOL, 14.7 demand Fuel switching in transport CLI, 2.6 EPOL CLI

• Efficiency and electrification key pillars for a low carbon Swiss energy system

Final energy consumption (excluding international aviation)

Final energy consumption per fuel and sector (PJ/yr.)

- Reduction of per-capita energy consumption in CLI beyond SES targets in 2035 (-46% compared to -43% in SES)
- Electricity hardly increases over time in E-POL as efficiency absorbs new uses in mobility & heat
- Electrification and renewables essential in CLI to decarbonise end-use sectors

Heat supply and mobility

Passenger cars (Bvkm/yr.)

Heat supply (PJ/yr.)

- Heat pumps share 55% in CLI; conservation measures up to 50% of current stock
- Electrification of private transport in CLI requests about 10 TW h_e /yr. in 2050

Flexibility in heating and mobility

Electricity stored in water heaters & heat pumps in 2050 (GWhe)

Linkage to

orage

for Energy Research

Swiss Competence Center

Decoupling of electricity consumption in electric-based heating and heat supply

mobility

 V2G provides about 3.8 TWh to the grid, mainly during the evening peak hours; G2V important in summer absorbing excess solar electricity

Electricity supply mix

JASM

Electricity generation (TWh/yr.)

- Variable RES account for 33% of the domestic supply in CLI in 2050
- Balancing of the supply and demand is also provided by CHP + heat storage systems

Electricity stationary storage

- In CLI, V2G and P2G reduce deployment of batteries as these options contribute both to decarbonisation and balancing
- In EPOL, batteries are important for balancing the increased supply from variable RES and achieve peak shavings
- Pump hydro correlates with international trade

Operating profiles in CLI scenario in 2050

- In summer, electrolyzers work almost base load to convert excess electricity into H2 and «clean» gas
- The shape of the demand curve is different from today due to shifts incurred by DSM flexibility and storages

Power to gas (P2G) pathways in CLI in 2050

- A hydrogen economy starts to emerge in CLI scenario in 2050
- About 12 TWh of electricity enter into P2G pathways to produce clean fuels
- About 1/3 of the produced hydrogen is seasonally shifted via storage
- P2G important for decarbonisation of demand and for providing balancing service

System cost (cumulative, undiscounted relative to BAU)

Conclusions

- If potentials on energy demand <u>and</u> supply side can be unlocked, the ambitious targets of the SES 2050 can be achieved at lowest possible costs.
- To achieve a 1.5C compatible energy system increased ambitions beyond the SES 2050 required.
- Collaboration across multiple SCCERS beneficial to advance the analytical framework for the Swiss energy system.

STEM – Swissmod link

STEM

- Swiss TIMES Energy System Model
- Detailed representation of all energy sectors
- Only coarse representation of electrical grids

Swissmod

- DC load flow, dispatch, costminimization model
- Transmission System
 - Ca. 230 nodes (150 in CH), 400 lines
- Particular detail on hydropower
- Hourly resolution
- Neighboring countries included in simplified representation

Verification of transmission grid feasibility

- STEM results are "energy-feasible"
- Swissmod
 - Are they also "transmission grid feasible"?
 - Do they work out with different hourly patterns of PV, wind and load?
 - Is the hydro-system flexible enough?
- Resulting indicators
 - Binary indicator whether scenarios are grid-feasible
 - If not, loss of load-hours
 - Curtailment of renewables: How much energy cannot be used, stored or transported?
 - Congestion evaluation: line usage, price differences, critical connections

Swiss EnergyScope Typical days (SES TD)

Stefano Moret's original model at monthly resolution

My new version at hourly resolution with typical days to better capture storage technologies at all time scales

Storage technologies

Inputs & outputs

Results for CLI scenario / TECH variant

Results for CLI scenario / TECH variant

Electricity production and demand (GW) Cost optimal point @ 14.6 Mt_{CO2}

Energy passing through a storage device Yearly aggregate

Energy flows in a year CO₂ optimal point @ 3.2 Mt_{CO2}

Think global, act local!

Future heat supply for Baden-Nord

How can we maximize the PV generation?

Case study Baden Nord

Case study Baden Nord

- Analysis objectives:
- Increasing the share of renewable energy
- Trade-offs between centralised systems or distributed systems per district
- Trade-offs between costs and carbon emissions emitted for operating the systems
- Need for deployment of heating or cooling networks?
 - At district level or between districts?
- Connection heat supply to waste treatment plant from Refuna?

Baden North – map building ages

Case study Baden Nord – Ehub tool approach

Case study Baden Nord – Energy systems optimisation

Pareto front: Baden North – Cluster 1

How to put more PV in distribution grids?

- Lines' ampacity ratings and stationary voltage levels limit the capacity of existing distribution networks to host distributed PV generation.
- Energy storage systems may increase PV hosting capacity while providing other ancillary services simultaneously — as opposed to grid reinforcements (powerline replacement, new substations)
- Size and site of storage can be determined by adapting optimal power flow problems with tractable formulations based on linearized or convexified load flow models [Sossan2018].

[Sossan2018] "Increasing the PV hosting Capacity of Distribution Grids with Distributed Storage: Siting, Sizing and

Costs", F. Sossan, R. Gupta, E. Scolari, M. Paolone, Technical Report, available online, 2018.

Problem Formulation

Output of the problem

Minimize

{ Capital investment to deploy energy storage systems }

(installation costs, cost per kWh, cost per kVA)

subject to

Grid model (admittance matrix)

Voltage statutory limits,

Current ampacity limits,

Storage state-of-energy model,

Land use constraints,

Highly spatiotemporal resolved time series

of demand and PV generation,

for all nodes

for all the lines

for all nodes

for all location

for all nodes

Results for CIGRE' grids

Energy capacity and power rating to deploy for the CIGRE benchmark systems

Final objectives

By relying on a method capable to assess the PV hosting capacity in distribution grids accounting for: (i) the stochastic behavior of the connected resources as well as (ii) potential asset reinforcement via distributed storage, the research provides quantitative answers to the following main questions:

- Can existing distribution networks of Switzerland accommodate the PV installed capacity levels designed in the scenarios?
- How much energy storage capacity is required to adequate existing distribution networks?
- How does the cost of installing energy storage systems compare to traditional network reinforcement solutions?
- What is the contribute of energy storage systems to others critical power systems' ancillary services (e.g., primary frequency control, synchronization services to support inertia-less power systems)?

Impact on stakeholders

- 1 According to academic scenario developers, in what ways can scientifically derived energy scenarios function as decision-support tools for the Swiss energy industry?
- 2 What are the interests, competencies and requirements of the energy industry towards energy scenarios?
- 3 Linking the perspectives: How can the credibility, legitimacy and salience of energy scenarios be improved for a key actor group of the Swiss energy transition?

Cost/emission optimal Pareto front

Heat

Heat pumps

New renewables

Boilers, cogeneration

Thermal energy storage

Consumption

Natural gas and hydrogen

Summary

Connection to the eight SCCER

SCCER	Inputs to JASM	Benefits for SCCER
SoE	Hydrological forecasts based on CH2018 Potential/cost data for hydro, PV, wind	Value of flexibility measures that compete with other flexibility providers
FEEB&D	Impact of renovation measures and climate change on heating demand	Cost-optimal mix of heat technologies, role of local storage
BIOSWEET	Biomass potential, options for biomass conversion routes (costs, performance)	Value of conversion routes in cost-optimal energy system, highlight role as a feedstock of climate-neutral carbon
HaE	Characteristics of storage technologies (batteries, thermal storage, etc)	Value of storage technologies for various time scales (hours to seasons), understand competition with other flexibility providers
EIP	Realistic values for future savings in energy consumption	Value of energy savings for the energy system as a whole
Mobility	Up-to-date characteristics (costs and performance) of future technologies Driving patterns for private cars	Cost-optimal mix of technologies for low- CO2 scenarios, highlight the role of sector coupling in providing flexibility (G2V/V2G)
FURIES	Reality check on future distributed PV generation, role of battery storage	Future electricity demand, input for T&D grid assessment
CREST	Coupling of energy system results with economic models (e.g. CGE)	Realistic technical vision of the future Swiss energy system

- All energy system models conclude that very low CO_2 emissions ($\leq 3 Mt_{CO2}/a$) can in principle be reached (excluding international aviation)
- There are differences in technology composition and costs which will be further analyzed
- The analysis of grid adequacy will follow

- JASM will deliver scenarios for a future Swiss energy system at very low CO₂ emissions
- We need to know from the research community what can be done better
- We need to know from the stakeholders of the energy system how we can help you
- Follow us on <u>www.sccer-jasm.ch</u>

Thank you for your attention!

Visit us on www.sccer-jasm.ch

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Innosuisse – Swiss Innovation Agency